loading - Search Results

Articles About loading


Articles are sorted by RELEVANCE. Sort by Date.

1 Loading Upgrades (March/April 2019)

The latest advances in gear manufacturing automation all seem to revolve around a common theme: automated loading.

2 The Design and Testing of a Low Noise Marine Gear (May/June 2000)

This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.

3 Crowning Techniques in Aerospace Actuation Gearing (August 2010)

One of the most effective methods in solving the edge loading problem due to excess misalignment and deflection in aerospace actuation gearing is to localize tooth-bearing contact by crowning the teeth. Irrespective of the applied load, if the misalignment and/or deflection are large enough to cause the contact area to reduce to zero, the stress becomes large enough to cause failure. The edge loading could cause the teeth to break or pit, but too much crowning may also cause the teeth to pit due to concentrated loading. In this paper, a proposed method to localize the contact bearing area and calculate the contact stress with crowning is presented and demonstrated on some real-life examples in aerospace actuation systems.

4 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

5 Effects of Profile Corrections on Peak-to-Peak Transmission Error (July 2010)

Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however, a new approach has been developed that could reduce the calculation time.

6 Finishing of Gears by Ausforming (November/December 1987)

Almost all machines or mechanical systems contain precision contact elements such as bearings, cams, rears, shafts, splines and rollers. These components have two important common requirements: first, they must possess sufficient mechanical properties, such as, high hardness, fatigue strength and wear resistance to maximize their performance and life; second, they must be finished to close dimensional tolerances to minimize noise, vibration and fatigue loading.

7 Selection of Hobbing Data (November/December 1987)

The art of gear hobbing has advanced dramatically since the development and introduction of unique machine and tool features such as no backlash, super rigidity, automatic loading of cutting tools, CNC controls, additional machine power and improved cutter materials and coatings. It is essential to utilize all these features to run the machine economically.

8 Compter-Aided Spur Gear Tooth Design: An Application-Driven Approach (November/December 1989)

This article discusses an application driven approach to the computer-aided sizing of spur gear teeth. The methodology is bases on the index of tooth loading and environment of application of the gear. It employs handbook knowledge and empirical information to facilitate the design process for a novice. Results show that the approach is in agreement with the textbook data. However, this technique requires less expert knowledge to arrive at the conclusion. The methodology has been successfully implemented as a gear tooth sizing module of a parallel axis gear drive expert system.

9 Mechanical Behavior and Microstructure of Ausrolled Surfaces in Gear Steels (March/April 1995)

Ausforming, the plastic deformation of heat treatment steels in their metastable, austentic condition, was shown several decades ago to lead to quenched and tempered steels that were harder, tougher and more durable under fatigue-type loading than conventionally heat-treated steels. To circumvent the large forces required to ausform entire components such as gears, cams and bearings, the ausforming process imparts added mechanical strength and durability only to those contact surfaces that are critically loaded. The ausrolling process, as utilized for finishing the loaded surfaces of machine elements, imparts high quality surface texture and geometry control. The near-net-shape geometry and surface topography of the machine elements must be controlled to be compatible with the network dimensional finish and the rolling die design requirements (Ref. 1).

10 Vectors in Gear Design (July/August 1999)

Friction weighs heavily on loads that the supporting journals of gear trains must withstand. Not only does mesh friction, especially in worm gear drives, affect journal loading, but also the friction within the journal reflects back on the loads required of the mesh itself.

11 Minimization of In-Process Corrosion of Aerospace Gears (July/August 2002)

Carbon steels have primarily been used to manufacture aerospace gears due to the steels' mechanical characteristics. An alloyed low carbon steel is easily case-hardened to obtain a hard wear surface while maintaining the ductile core characteristics. The microstructure achieved will accept the heavy loading, shocks, and elevated temperatures that gears typically experience in applications. The carbon steel machinability allows for general machining practices to be employed when producing aerospace gears versus the more advanced metal removal processes required by stainless and nickel-based alloys.

12 Contact Fatigue Characterization of Through-Hardened Steel for Low-Speed Applications like Hoisting (July 2017)

In several applications like hoisting equipment and cranes, open gears are used to transmit power at rather low speeds (tangential velocity < 1m/s) with lubrication by grease. In consequence those applications have particularities in terms of lubricating conditions and friction involved, pairing of material between pinion and gear wheel, lubricant supply, loading cycles and behavior of materials with significant contact pressure due to lower number of cycles.

13 Relationship between Misalignment and Transmission Error in Cross- Axes Helical Gear Assemblies (March/April 2019)

Question: I am a gear engineer for a motor manufacturer in China. I am writing about noise generated from cross-helical gear assembly error. I want to learn the relationship between the misalignment (center distance change and cross-angle shift) and transmission error. It is better under the loading and theory conditions. What is the trend of cross-helical gear development (use ZI worm and involute helical gear, point contact)?

14 A Comparative Study of Polymer Gears Made of Five Materials (November/December 2019)

The wear behavior of polymer gears made of five different materials has been investigated using an existing polymer gear test rig. Step loading tests at a constant speed of 1,000 rpm were performed. Significant differences in failure modes and performance have been observed for the five polymer gear materials for gear engagements of gears, with the same material as each other.

News Items About loading

1 Grieve No. 844 Top Loading Oven Utilized for Drying Water from Racks of Piston Rings (August 16, 2017)
No. 844 is a 500°F (260°C), top loading oven from Grieve, currently used for drying water from racks of piston rings at the custo... Read News

2 Affolter AF71 Universal Loading System Offers Three Methods for Part Feeding (July 7, 2017)
Affolter has recently unveiled the AF71, a new multi-axis part load and unload system. The loading head is equipped with a double gripper... Read News

3 Ipsen Awarded Patent on Vacuum Loading System (June 6, 2014)
Ipsen was recently awarded U.S. Patent No. 8,662,888 B2 for the development of a new loading system. Chief Engineer Craig Moller, the nam... Read News

4 mG miniGears Installs Furnace Loading System (June 25, 2007)
mG miniGears installed a furnace loading system in its powder metal department to avoid defects, especially for gears where small damage of the... Read News

5 Lucifer Furnaces Builds Top Loading Furnace for Medical Manufacturer (November 4, 2020)
Lucifer Furnaces recently supplied a Top Loading Furnace to a leading tooling manufacturer. Model TL7-481818 has a chamber size of 48&rdq... Read News

6 Koepfer America TM200 R3 Gear Deburring Machine Offers Automatic Loading (November 10, 2017)
As automation continues to transform the manufacturing industry, gear deburring often remains an operation performed by hand. This burden... Read News

7 Honing System Allows Robotic Part Loading of Landing Gear Components (July 24, 2008)
The SVC-310 vertical CNC honing system from Sunnen sizes small and medium gas/diesel engine blocks, large gears, air compressors, aerosp... Read News