loads - Search Results

Articles About loads


Articles are sorted by RELEVANCE. Sort by Date.

1 Tooth Root Optimization of Powder Metal Gears - Reducing Stress from Bending and Transient Loads (June/July 2013)

This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.

2 Controlling Tooth Loads In Helical Gears (March/April 1986)

Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel shafts.

3 Dynamic Loads in Parallel Shaft Transmissions Part 1 (March/April 1990)

Recently, there has been increased interest in the dynamic effects in gear systems. This interest is stimulated by demands for stronger, higher speed, improved performance, and longer-lived systems. This in turn had stimulated numerous research efforts directed toward understanding gear dynamic phenomena. However, many aspects of gear dynamics are still not satisfactorily understood.

4 Dynamic Loads in Parallel Shaft Transmissions - Part 2 (May/June 1990)

Solutions to the governing equations of a spur gear transmission model, developed in a previous article are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also, it is found that the transmitted load and shaft inertia have little effect upon the total dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect upon dynamic loadings the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness, the higher the rotating speed required for peak dynamic response.

5 Influence of Planet Carrier Misalignments on the Operational Behavior of Planetary Gearboxes (July 2020)

This study deals with the modeling and consideration of misalignments in planetary gearboxes in the optimization and design process. Procedures for taking into account misalignments in cylindrical gearboxes are standardized and established in industry. Misalignments of central elements like carrier, sun gear or ring gear in planetary gearboxes, cause varying contact positions and variable loads, depending on the angular position of the central elements. This load, which is variable over the circumference, is not taken into account in the standardized procedures, despite its effects on the loads on the gears.

6 Thermal Behavior of Helical Gears (May 2007)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied.

7 Predicted Effect of Dynamic Load on Pitting Fatigue Life for Low-Contact-Ratio Spur Gears (March/April 1989)

How dynamic load affects the pitting fatigue life of external spur gears was predicted by using NASA computer program TELSGE. TELSGE was modified to include an improved gear tooth stiffness model, a stiffness-dynamic load iteration scheme and a pitting-fatigue-life prediction analysis for a gear mesh. The analysis used the NASA gear life model developed by Coy, methods of probability and statistics and gear tooth dynamic loads to predict life. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact.

8 Determination of Maximum Loads for Drivetrain Components in Thrusters Using Flexible Multibody-System Models (August 2017)

The usage of modern thrusters allows combining the functions of the drive and the ship rudder in one unit, which are separated in conventional ship propulsion systems. The horizontally oriented propeller is supported in a vertically rotatable nacelle that is mounted underneath the ship's hull. The propeller can directly or indirectly be driven by an electric motor or combustion engine. Direct drive requires the installation of a low-speed electric motor in the nacelle. This present paper concentrates on indirect drives where the driving torque is transferred by bevel gear stages and shafts from the motor to the propeller.

9 The Interrelationship of Tooth Thickness Measurements as Evaluated by Various Measuring Techniques (September/October 1987)

The first commandment for gears reads "Gears must have backlash!" When gear teeth are operated without adequate backlash, any of several problems may occur, some of which may lead to disaster. As the teeth try to force their way through mesh, excessive separating forces are created which may cause bearing failures. These same forces also produce a wedging action between the teeth with resulting high loads on the teeth. Such loads often lead to pitting and to other failures related to surface fatigue, and in some cases, bending failures.

10 Calculating Dynamic Loads, Sizing Worm Gears and Figuring Geometry Factors (May/June 2001)

Q&A is an interactive gear forum. Send us you gear design, manufacturing, inspection or other related questions, and we will pass them to our panel of experts.

11 Vectors in Gear Design (July/August 1999)

Friction weighs heavily on loads that the supporting journals of gear trains must withstand. Not only does mesh friction, especially in worm gear drives, affect journal loading, but also the friction within the journal reflects back on the loads required of the mesh itself.

12 Comparing Standards (September/October 1998)

One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.

13 Suitability of High Density Powder Metal Gears for Gear Applications (January/February 2001)

The implementation of powder metal (PM)components in automotive applications increases continuously, in particular for more highly loaded gear components like synchromesh mechanisms. Porosity and frequently inadequate material properties of PM materials currently rule out PM for automobile gears that are subject to high loads. By increasing the density of the sintered gears, the mechanical properties are improved. New and optimized materials designed to allow the production of high-density PM gears by single sintering may change the situation in the future.

14 Failures of Bevel-Helical Gear Units on Traveling Bridge Cranes (November/December 2000)

Bridge cranes are among the most useful machines in many branches of modern industry. Using standard hooks or other specialized clamping devices, they can lift, transport, discharge, and stack a variety of loads.

15 Fatigue Aspects of Case Hardened Gears (March/April 1999)

The efficient and reliable transmission of mechanical power continues, as always, to be a central area of concern and study in mechanical engineering. The transmission of power involves the interaction of forces which are transmitted by specially developed components. These components must, in turn, withstand the complex and powerful stresses developed by the forces involved. Gear teeth transmit loads through a complex process of positive sliding, rolling and negative sliding of the contacting surfaces. This contact is responsible for both the development of bending stresses at the root of the gear teeth and the contact stresses a the contacting flanks.

16 Gears on the Firing Line (November/December 1998)

Air compressors are a good example of industrial machinery with components that rotate at very high speeds, up to 80,000 rpm. They are subject to very high rotational forces and often variable loads. Strong, high-precision gears for the power transmission trains that drive the impellers are critical components of machinery operating under such conditions.

17 Gear Grinding Comes of Age (July/August 1995)

In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.

18 CNC Gear Grinding Methods (May/June 1997)

Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.

19 The Effect of Start-Up Load Conditions on Gearbox Performance and Life Failure Analysis, With Supporting Case Study (June 2009)

If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions, and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.

20 Ten Myths About Gear Lubrication (May/June 1995)

Myth No. 1: Oil Is Oil. Using the wrong oil is a common cause of gear failure. Gears require lubricants blended specifically for the application. For example, slow-speed spur gears, high-speed helical gears, hypoid gears and worm gears all require different lubricants. Application parameters, such as operating speeds, transmitted loads, temperature extremes and contamination risks, must be considered when choosing an oil. Using the right oil can improve efficiency and extend gear life.

21 The Fundamentals of Gear Press Quenching (March/April 1994)

Most steel gear applications require appreciable loads to be applied that will result in high bending and compressive stresses. For the material (steel) to meet these performance criteria, the gear must be heat treated. Associated with this thermal processing is distortion. To control the distortion and achieve repeatable dimensional tolerances, the gear will be constrained during the quenching cycle of the heat treatment process. This type of fixture quenching is the function of gear quench pressing equipment.

22 Getting Started in Exporting (March/April 1993)

Exporting. It's one of the hot strategies for helping boost businesses of all kinds, gear manufacturing among them. With domestic markets tight and new markets opening up overseas, exporting seems like a reasonable tactic. But while the pressure is on to sell overseas, there is equal, justifiable concern about whether the move is a good one. Horror stories abound about foreign restrictions, bureaucratic snafus, carloads of paperwork, and the complications and nuances of doing business in other languages and with other cultures.

23 Lubricant Jet Flow Phenomena in Spur and Helical Gears (January/February 1987)

In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.

24 Faster Honing to Mirror Fishises on Gear Faces and Bores (June 2010)

Stringent NVH requirements, higher loads and the trend towards miniaturization to save weight and space are forcing transmission gear designers to increasingly tighten the surface finish, bore size and bore-to-face perpendicularity tolerances on the bores of transmission gears.

25 Cleaner Steels Provide Gear Design Opportunities (November/December 2017)

Gear designers face constant pressure to increase power density in their drivetrains. In the automotive industry, for example, typical engine torque has increased significantly over the last several decades. Meanwhile, the demands for greater fuel efficiency mean designers must accommodate these increased loads in a smaller, more lightweight package than ever before. In addition, electric and hybrid vehicles will feature fewer gears, with fewer transmission speeds, running at higher rpms, meaning the gears in those systems will have to endure life cycles far beyond what is typical with internal combustion engines.

News Items About loads

1 Dürr Ecoclean EcoCDuty Cleaning System Built to Process Large Loads (March 15, 2016)
Dürr Ecoclean has developed a solvent-based cleaning system, the large-chamber EcoCDuty, for heat-treating contractors, metalforming... Read News

2 Compact Haas Lathe Automatically Loads Parts (October 21, 2008)
The SL-20APL from Haas Automation is capable of automatically picking up parts from an external tray and loading them directly in the l... Read News