milling cutters - Search Results

Articles About milling cutters

Articles are sorted by RELEVANCE. Sort by Date.

1 Gear Tooth Surface Roughness of Helical Gears Manufactured by a Form Milling Cutter (September/October 2015)

Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some special cases, such as small scale production and, the obvious, manufacture of internal gears. To manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the geometry of the form wheel is determined through inverse calculation. A mathematical model is presented where it is possible to determine the machined gear tooth surface in three dimensions, manufactured by this tool, taking the finite number of cutting edges into account. The model is validated by comparing calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.

2 Progress in Gear Milling (January/February 2013)

Sandvik presents the latest in gear milling technologies.

3 High Speed Steel: Different Grades for Different Requirements (September/October 2004)

Hobs, broaches, shaper cutters, shaver cutters, milling cutters, and bevel cutters used in the manufacture of gears are commonly made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.

4 Shaper Cutters-Design & Applications Part 1 (March/April 1990)

Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.

5 Runout, Helix Accuracy and Shaper Cutters (June/July 2012)

Our experts discuss runout and helix accuracy, as well as the maximum number of teeth in a shaper cutter.

6 Shaper Cutters - Design & Application - Part 2 (May/June 1990)

Cutter Sharpening Cutter sharpening is very important both during manufacturing and subsequently in resharpening after dulling. Not only does this process affect cutter "over cutting edge" quality and the quality of the part cut, but it can also affect the manner in which chip flow takes place on the cutter face if the surface finished is too rough or rippled.

7 Computer Aided Design for Gear Shaper Cutters (November/December 1987)

Computer programs have been developed to completely design spur and helical gear shaper cutters starting from the specifications of the gear to be cut and the type of gear shaper to be used. The programs generate the working drawing of the cutter and, through the use of a precision plotter, generate enlarge scaled layouts of the gear as produced by the cutter and any other layouts needed for its manufacture.

8 Gear Shaving Basics, Part II (January/February 1998)

In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.

9 Gear Finishing by Shaving, Rolling and Honing, Part I (March/April 1992)

There are several methods available for improving the quality of spur and helical gears following the standard roughing operations of hobbing or shaping. Rotary gear shaving and roll-finishing are done in the green or soft state prior to heat treating.

10 New Cutting Tool Developments in Gear Shaping Technology (January/February 1993)

The advent of CNC technology as applied to gear shaping machines has, in the last 10 years, led to an astonishing improvement in both productivity and quality. As is usual when developments such as this take place, the technology of the machine tool suddenly jumps ahead of that of the cutting tool, and the machine is then capable of producing faster than the cutting tool can withstand.

11 Gear Generating Using Rack Cutters (October/November 1984)

Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.

12 Innovative CNC Gear Shaping (January/February 1994)

The Shaping Process - A Quick Review of the Working Principle. In the shaping process, cutter and workpiece represent a drive with parallel axes rotating in mesh (generating motion) according to the number of teeth in both cutter and workpiece (Fig. 1), while the cutter reciprocates for the metal removal action (cutting motion).

13 Gear Shaving Basics - Part I (November/December 1997)

Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.

14 Machine Marks on Gear Flanks (May 2014)

What causes shaving cutter marks on gear flanks and can they be prevented?

15 Upgrading Your Toolbox (May 2017)

Manufacturers focus on tool design, materials, coating, machine tool options and cutting parameters.

16 The Two-Sided-Ground Bevel Cutting Tool (May/June 2003)

In the past, the blades of universal face hobbing cutters had to be resharpened on three faces. Those three faces formed the active part of the blade. In face hobbing, the effective cutting direction changes dramatically with respect to the shank of the blade. Depending on the individual ratio, it was found that optimal conditions for the chip removal action (side rake, side relief and hook angle) could just be established by adjusting all major parameters independently. This, in turn, results automatically in the need for the grinding or resharpening of the front face and the two relief surfaces in order to control side rake, hook angle and the relief and the relief angles of the cutting and clearance side.

17 Design Implications for Shaper Cutters (July/August 1996)

A gear shaper cutter is actually a gear with relieved cutting edges and increased addendum for providing clearance in the root of the gear being cut. The maximum outside diameter of such a cutter is limited to the diameter at which the teeth become pointed. The minimum diameter occurs when the outside diameter of the cutter and the base circle are the same. Those theoretical extremes, coupled with the side clearance, which is normally 2 degrees for coarse pitch cutters an d1.5 degrees for cutters approximately 24-pitch and finer, will determine the theoretical face width of a cutter.

18 Big Gears Better and Faster (January/February 2011)

Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.

19 New Concepts in CNC Gear Shaping (July/August 1995)

In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.

20 Avoiding Interference In Shaper-Cut Gears (January/February 1996)

In the process of developing gear trains, it occasionally occurs that the tip of one gear will drag in the fillet of the mating gear. The first reaction may be to assume that the outside diameter of the gear is too large. This article is intended to show that although the gear dimensions follow AGMA guidelines, if the gear is cut with a shaper, the cutting process may not provide sufficient relief in the fillet area and be the cause of the interference.

21 Computerized Recycling of Used Gear Shaver Cutters (May/June 1993)

Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.

22 5-Axis Gear Manufacturing Gets Practical (March/April 2017)

Exciting new machine, cutting tool and software technologies are compelling many manufacturers to take a fresh look at producing their larger gears on machining centers. They're faster than ever, more flexible, easy to operate, highly affordable - and for any type of gear.

23 Manufacturing Method of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System Using Multi-Axis Control and Multi-Tasking Machine Tool (August 2011)

In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.

24 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

25 Delivering Big Gears Fast (May 2013)

When a customer needed gears delivered in three weeks, here’s how Brevini Wind got it done.

26 Optimal Modifications of Gear Tooth Surfaces (March/April 2011)

In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.

27 Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV (January/February 2011)

This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.

28 Gear Milling on Non-Gear Dedicated Machinery (July 2009)

Imagine the flexibility of having one machine capable of milling, turning, tapping and gear cutting with deburring included for hard and soft material. No, you’re not in gear fantasy land. The technology to manufacture gears on non gear-dedicated, mult-axis machines has existed for a few years in Europe, but has not yet ventured into mainstream manufacturing. Deckel Maho Pfronten, a member of the Gildemeister Group, took the sales plunge this year, making the technology available on most of its 2009 machines.

29 Cutting Gears on a Machining Center (November/December 2009)

Depo provides all-in-one machining capabilities for the gear industry.

30 A Split Happened on the Way to Reliable, Higher-Volume Gear Grinding (September/October 2005)

Bevel gear manufacturers live in one of two camps: the face hobbing/lapping camp, and the face milling/grinding camp.

31 Untraditional Gear Machining (October 2013)

Look beyond the obvious, and you may well find a better way to machine a part, and serve your customer better. That’s the lesson illustrated in a gear machining application at Allied Specialty Precision Inc. (ASPI), located in Mishawaka, Indiana.

32 Making it in Mobile (November/December 2014)

“If it’s broken, bring it on in.” That’s the advice offered by Roy Parker, president and owner of Jones Welding Company Inc.

33 Innovating Against the Tide (September/October 2016)

During a year with a strong dollar, tanked oil prices and a number of soft markets that just aren’t buying, one might expect spline manufacturers to be experiencing the same tumult everyone else is. But when I got a chance to speak with some of the suppliers to spline manufacturers at IMTS about how business is going, many of the manufacturing industry’s recent woes never came up, and instead were replaced by a shrug and an “eh, business is doing pretty well.”

34 Best Tooling for Hard Milling a Gear Tooth on 5-Axis Machining Center (January/February 2017)

What is the best tooling to use when hard milling a gear tooth on a 5-axis machining center? And what makes it the best? We have just bought a DMG Mori mono-block and are not getting the finishes at the cycle times we require.

35 Message Received (March/April 2017)

Big Data Expands Process Capabilities for Multi-Axis Machining.

36 Bevel Gear Cutting Methods (June 2016)

THE FINAL CHAPTER This is the last in the series of chapters excerpted from Dr. Hermann J. Stadtfeld’s Gleason Bevel Gear Technology — a book written for specialists in planning, engineering, gear design and manufacturing. The work also addresses the technical information needs of researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems. While all of the above groups are of course of invaluable importance to the gear industry, it is surely the students who hold the key to its future. And with that knowledge it is reassuring to hear from Dr. Stadtfeld of the enthusiastic response he has received from younger readers of these chapter installments.

37 Practical Gear Characteristics: Process Characteristics of the Most Popular Cutting Methods (March/April 2016)

The cutting process consists of either a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).

38 Quality and Surface of Gears Manufactured by Free-Form Milling with Standard Tools (January/February 2015)

The recently available capability for the free-form milling of gears of various gear types and sizes — all within one manufacturing system — is becoming increasingly recognized as a flexible machining process for gears.

39 An Approach to Pairing Bevel Gears from Conventional Cutting Machine with Gears Produced on 5-Axis Milling Machine (June 2015)

Developed here is a new method to automatically find the optimal topological modification from the predetermined measurement grid points for bevel gears. Employing this method enables the duplication of any flank form of a bevel gear given by the measurement points and the creation of a 3-D model for CAM machining in a very short time. This method not only allows the user to model existing flank forms into 3-D models, but also can be applied for various other purposes, such as compensating for hardening distortions and manufacturing deviations which are very important issues but not yet solved in the practical milling process.

40 Hard-Finishing Spiral Bevel Gears (March/April 2016)

Could you explain to me the difference between spiral bevel gear process face hobbing-lapping, face milling-grinding and Klingelnberg HPG? Which one is better for noise, load capacity and quality?

41 Performance of Gears Manufactured by 5-Axis Milling (March/April 2017)

Free form milling of gears becomes more and more important as a flexible machining process for gears. Reasons for that are high degrees of freedom as the usage of universal tool geometry and machine tools is possible. This allows flexible machining of various gear types and sizes with one manufacturing system. This paper deals with manufacturing, quality and performance of gears made by free form milling. The focus is set on specific process properties of the parts. The potential of free form milling is investigated in cutting tests of a common standard gear. The component properties are analyzed and flank load-carrying capacity of the gears is derived by running trials on back-to-back test benches. Hereby the characteristics of gears made by free form milling and capability in comparison with conventionally manufactured gears will be shown.

News Items About milling cutters

1 Walter MC232 Perform Milling Cutters Provide Universal Applicability for Milling Operations (May 4, 2017)
Walter has added to its range of solid carbide milling cutters with the introduction of its MC232 Perform product line. These three versa... Read News

2 Walter M4000 Family Helical Milling Cutters Expanded to Include Three New Models (July 15, 2016)
Walter has announced the addition of the M4256, M4257 and M4258 high-performance helical milling cutters to its M4000 family. The M4000 p... Read News

3 Controx-Neuhauser Saw Blades and Side Milling Cutters On Display at PMTS (February 24, 2017)
Controx-Neuhauser is presenting a full line of standard saw blades and side chip clearance saws suitable for a wide range of precision cu... Read News