non-standard - Search Results

Articles About non-standard

Articles are sorted by RELEVANCE. Sort by Date.

1 Non-Standard Cylindrical Gears (November/December 2004)

Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.

2 Direct Gear Design for Spur and Helical Involute Gears (September/October 2002)

Modern gear design is generally based on standard tools. This makes gear design quite simple (almost like selecting fasteners), economical, and available for everyone, reducing tooling expenses and inventory. At the same time, it is well known that universal standard tools provide gears with less than optimum performance and - in some cases - do not allow for finding acceptable gear solutions. Application specifies, including low noise and vibration, high density of power transmission (lighter weight, smaller size) and others, require gears with nonstandard parameters. That's why, for example, aviation gear transmissions use tool profiles with custom proportions, such as pressure angle, addendum, and whole depth. The following considerations make application of nonstandard gears suitable and cost-efficient:

3 Industry Forum (May/June 1985)

This letter is in response to your article asking the readers where their interests lie. The division of Rockwell International where I work has engineering departments in Cicero.

4 Industry Forum (July/August 1985)

In response to Ed Uberts letter, we have come a long way in gearing since WWII. The Europeans do use long addendum pinions in many cases. This modification does improve load capacity, sliding conditions and the working life of a gearset. When modifying a pinion tooth it is necessary to modify the gear tooth or adjust the center distance accordingly but we will leave that to the designers.

5 Rating of Helical Asymmetric Tooth Gears (November/December 2017)

Although gear geometry and the design of asymmetric tooth gears are well known and published, they are not covered by modern national or international gear design and rating standards. This limits their broad implementation for various gear applications, despite substantial performance advantages in comparison to symmetric tooth gears for mostly unidirectional drives. In some industries — like aerospace, that are accustomed to using gears with non-standard tooth shapes — the rating of these gears is established by comprehensive testing. However, such testing programs are not affordable for many other gear drive applications that could also benefit from asymmetric tooth gears.

6 Generating Precision Spur Gears By Wire EDM (May/June 1996)

Over the past decade, the wire electrical discharge machine (EDM) has become an increasingly important tool for machining non-standard shapes. It has even been used to cut gears and gear cavities for plastic molds. While generally accepted as a quick and versatile method for cutting spur gears, the EDM gear has lacked the precision of a mechanically machined or ground gear. We suspected that many of the errors associated with these gears were caused by inexact setup procedures, poor tool path control and improper cutting parameters. We decided to test the potential for the wire EDM to make the most accurate gear possible.