# operating pressure angle - Search Results

## Articles About operating pressure angle

Articles are sorted by RELEVANCE. Sort by Date.

What is the difference between pressure angle and operating pressure angle?

The purpose of this paper is to present a method of designing and specifying gear teeth with much higher bending and surface contact strength (reduced bending and surface contact stresses). This paper will show calculation procedures, mathematical solutions and the theoretical background equations to do this.

This paper presents a new approach to repair industrial gears by showing a case study where pressure angle modification is also considered, differently from the past repairing procedures that dealt only with the modification of the profile shift coefficient. A computer program has been developed to automatically determine the repair alternatives under two goals: minimize the stock removal or maximize gear tooth strength.

It's the New Year, and with it comes the opportunity to take a fresh look at your business objectives. Because business development is such a vital part of running a company, I'd like to present some guidelines I have found beneficial for securing new work and new customers.

Chapter 2, Continued In the previous sections, development of conjugate, face milled — as well as face hobbed — bevel gearsets — including the application of profile and length crowning — was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. — how it is applied to bevel and hypoid gears and then expands on profile side shift, and the frequently used root angle correction which — from its gear theoretical understanding — is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following chapters, some of which also will be covered in this series.

To ensure profitability and avoid losses, accurately quoting jobs is the first line of defense.

In this issue's column, Joe lays out the basic truth for most manufacturing companies: If you're not moving forward, you're falling behind.

I'm sure it comes as no surprise that finding skilled people to work in your manufacturing facility is no simple task. But after finding them, and investing in the development of their abilities, what happens when one of them - an employee your company really needs - becomes a troublesome employee? This is among the trickiest situations a manager can face.

The presidents of two manufacturing companies were having a drink in the lobby before the start of their trade association's annual meeting...

How should we consider random helix angle errors fH&beta; and housing machining errors when calculating KH&beta;? What is a reasonable approach?

With reference to the machining of an involute spur or helical gear by the hobbing process, this paper suggests a new criterion for selecting the position of the hob axis relative to the gear axis.

High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications are presented.

Often, the required hardness qualities of parts manufactured from steel can only be obtained through suitable heat treatment. In transmission manufacturing, the case hardening process is commonly used to produce parts with a hard and wear-resistant surface and an adequate toughness in the core. A tremendous potential for rationalization, which is only partially used, becomes available if the treatment time of the case hardening process is reduced. Low pressure carburizing (LPC) offers a reduction of treatment time in comparison to conventional gas carburizing because of the high carbon mass flow inherent to the process (Ref. 1).

This paper presents how low pressure carburizing and high pressure gas quenching processes are successfully applied on internal ring gears for a six-speed automatic transmission. The specific challenge in the heat treat process was to reduce distortion in such a way that subsequent machining operations are entirely eliminated.

The load capacity rating of gears had its beginning in the 18th century at Leiden University when Prof. Pieter van Musschenbroek systematically tested the wooden teeth of windmill gears, applying the bending strength formula published by Galilei one century earlier. In the next centuries several scientists improved or extended the formula, and recently a Draft International Standard could be presented.

Our company manufactures a range of hardened and ground gears. We are looking into using skiving as part of our finishing process on gears in the 4-12 module range made form 17 CrNiMO6 material and hardened to between 58 and 62 Rc. Can you tell us more about this process?

Suppliers are working hard to make sure their heat treating equipment is controllable, repeatable and efficient, and manufacturers continue to incorporate technology that gives heat treaters and their customers more information about what's going on inside the magic box.

In the past, the blades of universal face hobbing cutters had to be resharpened on three faces. Those three faces formed the active part of the blade. In face hobbing, the effective cutting direction changes dramatically with respect to the shank of the blade. Depending on the individual ratio, it was found that optimal conditions for the chip removal action (side rake, side relief and hook angle) could just be established by adjusting all major parameters independently. This, in turn, results automatically in the need for the grinding or resharpening of the front face and the two relief surfaces in order to control side rake, hook angle and the relief and the relief angles of the cutting and clearance side.