pitch - Search Results

Articles About pitch


Articles are sorted by RELEVANCE. Sort by Date.

1 Base Pitch Tables (September/October 1992)

There is one dimension common to both members of a pair of properly mating spur gears - the base pitch (BP). This base pitch is equal to the circular pitch of the gear on the base circle (see Fig. 1). For a helical gear, the base pitch can be described in either the transverse or normal plane, and is called the transverse base pitch (TBP) or normal base pitch (NBP), respectively. For parallel axis helical gears, both the TBP and NBP must be the same on both mating gears. For skew axis helical gears, only the NBP must be common.

2 The Math of Noncircular Gearing (July/August 2000)

Noncircular gearing is not new. There are well-documented articles covering standard and high order elliptical gears, sinusoidal gears, logarithmic spiral gears, and circular gears mounted eccentrically. What these designs have in common is a pitch curve defined by a mathematical function. This article will cover noncircular gearing with free-form pitch curves, which, of course, includes all the aforementioned functions. This article also goes into the generation of teeth on the pitch curve, which is not usually covered in the technical literature. Needless to say, all this is possible only with the help of a computer.

3 Measuring Profile and Base Pitch Error with a Micrometer (September/October 2002)

In this article, equations for finding profile and base pitch errors with a micrometer are derived. Limitations of micrometers with disc anvils are described. The design of a micrometer with suitable anvils is outlined.

4 Measuring Pitch Diameter (September/October 2005)

Wait a minute, we don't measure pitch diameter. We're sometimes asked to measure it by customers, though, especially ones with older drawings.

5 Coarse Pitch Gears (May/June 1993)

This article discusses briefly some common manufacturing problems relating to coarse pitch gears and their suggested solutions. Most of the discussion will be limited to a low-quality production environment using universal machine tools.

6 Small-Module Gear Design (November/December 2014)

Gears with a diametral pitch 20 and greater, or a module 1.25 millimeters and lower, are called fine-pitch or low-module gears. The design of these gears has its own specifics.

7 The Effect of Straight-Sided Hob Teeth (November/December 2010)

It is well known that hobs with straight-sided teeth do not cut true involutes. In this paper, the difference between the straight side of a hob tooth and the axial profile of an involute worm is evaluated. It is shown that the difference increases as the diametral pitch increases, to the extent that for fine-pitch gearing, the difference is insignificant.

8 Extending the Benefits of Elemental Gear Inspection (July 2009)

It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.

9 Wind Turbine Pitch and Yaw Drive Manufacturers Draw Breath as Market Slows (January/February 2010)

The global wind energy market has seen average growth rates of 28 percent over the last 10 years, according to the Global Wind Energy Council (GWEC), creating major challenges for the component supply industry. GWEC also forecasts an average growth rate of 22 percent for the next five years, which if realized, will continue to put pressure on suppliers of turbine components.

10 First International Involute Gear Comparison (August 2014)

Measurement institutions of seven different countries — China, Germany, Japan, Thailand, Ukraine, United Kingdom and the U.S. — participated in the implementation of the first international comparison of involute gear measurement standards. The German metrology institute Physikalisch-Technische Bundesanstalt (PTB) was chosen as the pilot laboratory as well as the organizer. Three typical involute gear measurement standards provided by the PTB were deployed for this comparison: a profile, a helix and a pitch measurement standard. In the final analysis, of the results obtained from all participants, the weighted mean was evaluated as reference value for all 28 measured parameters. However, besides the measurement standards, the measured parameters, and, most importantly, some of the comparison results from all participants are anonymously presented. Furthermore, mishandling of the measurement standards as occurred during the comparison will be illustrated.

11 Economics of CNC Gear Gashing vs. Large D.P. Hobbing (August/September 1984)

Gear gashing is a gear machining process, very much like gear milling, utilizing the principle of cutting one or more tooth (or tooth space) at a time. The term "GASHING" today applies to the roughing, or roughing and finishing, of coarse diametral pitch gears and sprockets. Manufacturing these large coarse gears by conventional methods of rough and finish hobbing can lead to very long machining cycles and uneconomical machine utilization.

12 Big Gears - High Standards, High Profits (January/February 2009)

Natural resources—minerals, coal, oil, agricultural products, etc.—are the blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.

13 Cutting Low-Pitch-Angle Bevel Gears, Worm Gears and The Oil Entry Gap (July/August 1992)

Question: Do machines exist that are capable of cutting bevel gear teeth on a gear of the following specifications: 14 teeth, 1" circular pitch, 14.5 degrees pressure angle, 4 degrees pitch cone angle, 27.5" cone distance, and an 2.5" face width?

14 My Gear Is Bigger than Your Gear (March/April 2013)

Industry battles it out for World's Largest Gear title.

15 Increased Tooth Bending Strength and Pitting Load Capacity of Fine-Module Gears (September/October 2016)

The common calculation methods according to DIN 3990 and ISO 6336 are based on a comparison of occurring stress and allowable stress. The influence of gear size on the load-carrying capacity is considered with the size factors YX (tooth root bending) and ZX (pitting), but there are further influences, which should be considered. In the following, major influences of gear size on the load factors as well as on the permissible tooth root bending and contact stress will be discussed.

16 Gear Material Selection and Construction for Large Gears (January/February 2013)

A road map is presented listing critical considerations and optimal use of materials and methods in the construction of large gears.

17 An Emphasis on Accuracy (June/July 2011)

Meeting the many challenges of large gear inspection.

18 Large Pinions for Open Gears - The Increase of Single Mesh Load (January/February 2013)

This paper introduces mandatory improvements in design, manufacturing and inspection - from material elaboration to final machining - with special focus on today's large and powerful gearing.

19 Size and Material Influence on the Tooth Root, Pitting, Scuffing and Wear Load-Carrying Capacity of Fine-Module Gears (September 2011)

In this study, limiting values for the load-carrying-capacity of fine-module gears within the module range 0.3–1.0 mm were determined and evaluated by comprehensive, experimental investigations that employed technical, manufacturing and material influence parameters.

20 A Huge Success (September/October 1995)

Sivyer Steel Corporation, Bettendorf, IA, an ISO-9002-certified casting specialist, is familiar with tackling tough jobs. The company has built an international reputation as a supplier of high-integrity castings, especially those which require engineering and/or full machining. Its not unusual for Sivyer's customers, especially those in the mining, recycling, power generation, valve and nuclear fields, to ask the foundry to produce a one-of-a-kind casting - often something revolutionary - but AnClyde Engineered Products' request was a special challenge, even for Sivyer.

21 Surface Pitting Fatigue Life of Noninvolute Low-Contact-Ratio Gears (May/June 1991)

Spur gear endurance tests were conducted to investigate the surface pitting fatigue life of noninvolute gears with low numbers of teeth and low contact ratios for the use in advanced application. The results were compared with those for a standard involute design with a low number of teeth. The gear pitch diameter was 8.89 cm (3.50 in.) with 12 teeth on both gear designs. Test conditions were an oil inlet temperature of 320 K (116 degrees F), a maximum Hertz stress of 1.49 GPa (216 ksi), and a speed of 10,000 rpm. The following results were obtained: The noninvolute gear had a surface pitting fatigue life approximately 1.6 times that of the standard involute gear of a similar design. The surface pitting fatigue life of the 3.43-pitch AISI 8620 noninvolute gear was approximately equal to the surface pitting fatigue life of an 8-pitch, 28-tooth AISI 9310 gear at the same load, but at a considerably higher maximum Hertz stress.

22 Hypoid Gears: Tribology Aspects in Angular Transmission Systems, Part VII (June/July 2011)

Hypoid gears are the paragon of gearing. To establish line contact between the pitches in hypoid gears, the kinematically correct pitch surfaces have to be determined based on the axoids. In cylindrical and bevel gears, the axoids are identical to the pitch surfaces and their diameter or cone angle can be calculated simply by using the knowledge about number of teeth and module or ratio and shaft angle. In hypoid gears, a rather complex approach is required to find the location of the teeth—even before any information about flank form can be considered. This article is part seven of an eight-part series on the tribology aspects of angular gear drives.

23 The Basics of Gear Metrology and Terminology Part II (November/December 1998)

In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.

24 Profile Shift in External Parallel Axis Cylindrical Involute Gears (November/December 2001)

Early in the practice of involute gearing, virtually all gears were made with the teeth in a standard relationship to the reference pitch circle. This has the advantages that any two gears of the same pitch, helix angle and pressure angle can operate together, and that geometry calculations are relatively simple. It was soon realized, though, that there are greater advantages to be gained by modifying the relationship of the teeth to the reference pitch circle. The modifications are called profile shift.

25 What Is Runout, And Why Should I Worry About It (January/February 1991)

Runout is a troublemaker! Good shop practice for the manufacture or inspection of gears requires the control of runout. Runout is a characteristic of gear quality that results in an effective center distance variation. As long as the runout doesn't cause loss of backlash, it won't hurt the function of the gear, which is to transmit smooth motion under load from one shaft to another. However, runout does result in accumulated pitch variation, and this causes non-uniform motion, which does affect the function of the gears. Runout is a radial phenomenon, while accumulated pitch variation is a tangential characteristic that causes transmission error. Gears function tangentially. It is also possible to have a gear with accumulated pitch variation, but little or no runout.

26 Helical Gear Systems (August 2016)

In terms of the tooth thickness, should we use the formulation with respect to normal or transverse coordinate system? When normalizing this thickness in order to normalize the backlash (backlash parameter), we should divide by the circular pitch. Thus, when normalizing, should this circular pitch be defined in the normal or traverse coordinate system, depending on which formulation has been used? Is the backlash parameter always defined with respect to the tangential plane or normal plane for helical gears?

27 Design Implications for Shaper Cutters (July/August 1996)

A gear shaper cutter is actually a gear with relieved cutting edges and increased addendum for providing clearance in the root of the gear being cut. The maximum outside diameter of such a cutter is limited to the diameter at which the teeth become pointed. The minimum diameter occurs when the outside diameter of the cutter and the base circle are the same. Those theoretical extremes, coupled with the side clearance, which is normally 2 degrees for coarse pitch cutters an d1.5 degrees for cutters approximately 24-pitch and finer, will determine the theoretical face width of a cutter.

28 The Design and Manufacture of Machined Plastic Gears (May/June 1985)

The use of plastic gearing is increasing steadily in new products. This is due in part to the availability of recent design data. Fatigue stress of plastic gears as a function of diametral pitch, pressure angle, pitch line velocity, lubrication and life cycles are described based on test information. Design procedures for plastic gears are presented.

29 The Sales Pitch (January/February 2014)

Kaukauna, Wisconsin may hold the secrets to solving the problem of our skilled labor shortage.

30 Carbide Hobbing Case Study (May/June 2002)

Bodine Electric Co. of Chicago, IL., has a 97-year history of fine-and medium-pitch gear manufacturing. Like anywhere else, traditions, old systems, and structures can be beneficial, but they can also become paradigms and obstacles to further improvements. We were producing a high quality product, but our goal was to become more cost effective. Carbide hobbing is seen as a technological innovation capable of enabling a dramatic, rather than an incremental, enhancement to productivity and cost savings.

31 Calculation of Slow Speed Wear of Lubricated Gears (November/December 1985)

On gear drives running with pitch line velocities below 0.5 m/s so called slow speed wear is often observed. To solve some problems, extensive laboratory test work was started 10 years ago. A total of circ. 300,000 h running time on FZG back-to-back test rigs have been run in this speed range.

32 Reinventing Cutting Tool Production at Gleason (May 2013)

Investment in advanced new manufacturing technologies is helping to reinvent production processes for bevel gear cutters and coarse-pitch hobs at Gleason - delivering significant benefits downstream to customers seeking shorter deliveries, longer tool life and better results.

33 Gear Backlash Analysis of Unloaded Gear Pairs in Transmissions (June 2016)

A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers' expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths. A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.

34 The Quest for the All-in-One Machine (January/February 2019)

Multitasking machines have a pretty clear sales pitch: They can do what you need them to and make a gear, but if you’re a job shop with fingers in a lot of pies, you can also use them for anything else you might need to make. Hobbing, cutting, milling, now even gear skiving; if it’s a cutting process, a multitasking machine can probably do it.

35 Definition and Inspection of Profile and Lead of a Worm Wheel (November/December 1999)

Traditionally, profile and lead inspections have been indispensable portions of a standard inspection of an involute gear. This also holds true for the worm of a worm gear drive (Ref. 1). But the inspection of the profile and the lead is rarely performed on a worm wheel. One of the main reasons is our inability to make good definitions of these two elements (profile and lead) for the worm wheel. Several researchers have proposed methods for profile and lead inspections of a worm wheel using CNC machines or regular involute and lead inspections of a worm wheel using CNC machines or regular involute measuring machines. Hu and Pennell measured a worm wheel's profile in an "involute" section and the lead on the "pitch" cylinder (Ref. 2). This method is applicable to a convolute helicoid worm drive with a crossing angle of 90 degrees because the wheel profile in one of the offset axial planes is rectilinear. This straight profile generates an involute on the generated worm wheel. Unfortunately, because of the hob oversize, the crossing angle between the hob and the worm wheel always deviates from 90 degrees by the swivel angle. Thus, this method can be implemented only approximately by ignoring the swivel angle. Another shortcoming of this method is that there is only one profile and one lead on each flank. If the scanned points deviated from this curve, it produced unreal profile deviation. Octrue discussed profile inspection using a profile checking machine (Ref. 3).

36 Robots are a Mans best Friend (January/February 2015)

Pretty much everyone old enough to utter the familiar, dual syllabic refrain of “beep boop” in the electro-mechanical, monotone pitch from every sci-fi movie ever made has the same idea of what a robot looks likes.

37 Specifying Custom Gears (May/June 1999)

Gear design and specification are not one and the same. They are the first two steps in making a gear. The designer sits down and mathematically defines the gear tooth, working with the base pitch of the gear, the pressure angle he wants to employ, the number of teeth he wants, the lead, the tooth thickness, and the outside, form and root diameters. With these data, the designer can create a mathematical model of the gear. At this stage, he will also decide whether the gear will be made from existing cutting tools or whether new tools will be needed, what kind of materials he will use, and whether or not he will have the gear heat treated and finished.

38 Tooth Contact Shift in Loaded Spiral Bevel Gears (November/December 1992)

An analytical method is presented to predict the shifts of the contact ellipses on spiral bevel gear teeth under load. The contact ellipse shift is the motion of the point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance.

39 Pressure Angle Changes in the Transverse Plane for Circular Cut Spiral Bevel Gears (September/October 1986)

Recently it has been suggested that the transverse plane may be very useful in studying the kinematics and dynamics of spiral bevel gears. The transverse plane is perpendicular to the pitch and axial planes as shown in Fig. 1. Buckingham has suggested that a spiral bevel gear may be viewed as a limited form of a "stepped" straight-tooth gear as in Fig. 2. The transverse plane is customarily used in the study of straight toothed bevel gears.

40 Gear Grinding Techniques Parallel Axes Gears (March/April 1985)

The fundamental purpose of gear grinding is to consistently and economically produce "hard" or "soft" gear tooth elements within the accuracy required by the gear functions. These gear elements include tooth profile, tooth spacing, lead or parallelism, axial profile, pitch line runout, surface finish, root fillet profile, and other gear geometry which contribute to the performance of a gear train.

41 CNC Gear Grinding Methods (May/June 1997)

Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.

42 Gear Corrosion During the Manufacturing Process (September/October 2009)

No matter how well gears are designed and manufactured, gear corrosion can occur that may easily result in catastrophic failure. Since corrosion is a sporadic and rare event and often difficult to observe in the root fillet region or in finely pitched gears with normal visual inspection, it may easily go undetected. This paper presents the results of an incident that occurred in a gear manufacturing facility several years ago that resulted in pitting corrosion and intergranular attack (IGA).

43 Worm Gear Measurement (September/October 1997)

Several articles have appeared in this publication in recent years dealing with the principles and ways in which the inspection of gears can be carried out, but these have dealt chiefly with spur, helical and bevel gearing, whereas worm gearing, while sharing certain common features, also requires an emphasis in certain areas that cause it to stand apart. For example, while worm gears transmit motion between nonparallel shafts, as do bevel and hypoid gears, they usually incorporate much higher ratios and are used in applications for which bevel would not be considered, including drives for rotary and indexing tables in machine tools, where close tolerance of positioning and backlash elimination are critical, and in situations where accuracy of pitch and profile are necessary for uniform transmission at speed, such as elevators, turbine governor drives and speed increasers, where worm gears can operate at up to 24,000 rpm.

44 Synthesis of Spiral Bevel Gears (March/April 1991)

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth surfaces. A few notable ones are the Gleason's gearing, the Klingelnberg's Palloid System, and the Klingelnberg's and Oerlikon's Cyclo Palliod System. The design of each type of spiral bevel gear depends on the method of generation used. It is based on specified and detailed directions which have been worked out by the mentioned companies. However, there are some general aspects, such as the concepts of pitch cones, generating gear, and conditions of force transmissions that are common for all types of spiral bevel gears.

45 Hard Finishing By Conventional Generating and Form Grinding (March/April 1991)

The quality of a gear and its performance is determined by the following five parameters, which should be specified for each gear: Pitch diameter, involute form, lead accuracy, spacing accuracy, and true axis of rotation. The first four parameters can be measured or charted and have to be within tolerance with respect to the fifth. Pitch diameter, involute, lead, and spacing of a gear can have master gear quality when measured or charted on a testing machine, but the gear might perform badly if the true axis of rotation after installation is no longer the same one used when testing the gear.

News Items About pitch

1 ISCAR Expands Fine-Pitch Mill Line (March 8, 2011)
ISCAR has expanded its popular line of Helido Round H400 fine-pitch mills to improve profile machining and ramping over a wider range of ... Read News

2 Bonfiglioli Yaw and Pitch Drives Power German Offshore Wind Farm (June 9, 2010)
Germany's first offshore wind farm, Alpha Ventus, features yaw and pitch drives from the Bonfiglioli Group. The wind farm feature... Read News

3 Northfield Precision Releases the Model 1000 Pitch Line Chuck (March 17, 2010)
Northfield Precision Instrument Corp., a designer and manufacturer of precision workholding chucks, introduces their Model 1000 10 in. di... Read News

4 Sandvik Offers Pitch-Perfect Threading Event (April 22, 2011)
Sandvik Coromant, a producer of cutting tools for the metal cutting industry, has announced that it will be holding a "Pitch-Perfect... Read News

5 AGMA Committee Revises Fine Pitch Gearing Data (May 2, 2014)
The AGMA Fine Pitch Gearing Committee is pleased to announce the publication of the newly revised information sheet AGMA 910-D12... Read News

6 Gleason Invests in Coarse Pitch Hob Production Cell (August 2, 2011)
In response to unprecedented global demand for large cylindrical gears, Gleason Cutting Tools Corporation has invested in an advanced coa... Read News

7 Monnier + Zahner MZ 500 D-Drive Gear Hobbing Machine Introduced as Compact Ultra-Fine Pitch Gear Manufacturing Solution (December 27, 2016)
The Monnier + Zahner ("MZ") 500 D-drive gear hobbing machine offers CNC technology in a compact footprint for top-quality fine-... Read News