splines - Search Results

Articles About splines

Articles are sorted by RELEVANCE. Sort by Date.

1 Advantages of Involute Splines as Compared to Straight Sided Splines (May/June 1985)

Since the design of involute splines and their manufacture requires considerable knowledge, not only of the basic properties of the involute profile, but also of various other elements which affect the spline fit and the sometimes complex principles underlying manufacturing and checking equipment, the question is frequently raised as to why the involute profile is given preference in designing splines over the seemingly simpler straight sided tooth profile.

2 Involute Splines (September/October 1990)

Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons: 1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions. 2)Power is usually required to be transmitted along a shaft.

3 Variation Analysis of Tooth Engagement and Load Sharing in Involute Splines (June 2010)

Involute spline couplings are used to transmit torque from a shaft to a gear hub or other rotating component. External gear teeth on the shaft engage an equal number of internal teeth in the hub. Because multiple teeth engage simultaneously, they can transmit much larger torques than a simple key and keyway assembly. However, manufacturing variations affect the clearance between each pair of mating teeth, resulting in only partial engagement.

4 Determining Spline Misalignment Capabilities (November/December 1995)

Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.

5 A Comparison of ISO 4156-ANSI B92.2M - 1980 With Older Imperial Standards (September/October 1994)

The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.

6 Involute Spline Size Inspection (March/April 1985)

This article describes a new technique for the size determination of external Involute splines by using a span measuring method. It provides application performance information demonstrating how this method and its measurements correlate with the traditional spline ring gage sizing method.

7 Gear Teeth as Bearing Surfaces (May 2017)

A reader wonders about gears where the tops of the teeth are the bearing surface, as used in spur gear differentials. Do they require any special construction or processing?

8 Innovating Against the Tide (September/October 2016)

During a year with a strong dollar, tanked oil prices and a number of soft markets that just aren’t buying, one might expect spline manufacturers to be experiencing the same tumult everyone else is. But when I got a chance to speak with some of the suppliers to spline manufacturers at IMTS about how business is going, many of the manufacturing industry’s recent woes never came up, and instead were replaced by a shrug and an “eh, business is doing pretty well.”

9 Load Distribution Analysis of Spline Joints (May 2014)

A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.

10 Better Gears & Splines With Metrology (July 2007)

What does it mean to make "better" gears? Better gears more closely resemble the intended design parameters.

11 Technology Tidbits (January/February 2002)

New Technique for Forging Crowned Helical Gears Createch Co. Ltd., a forging die manufacturer from Shizuoka, Japan, has developed a net-shape cold-forging process for forming helical gears and splines with crowned teeth.

12 Minimal Tooth Number of Flexspline in Harmonic Gear Drive with External Wave Generator (October 2013)

Wave generators are located inside of flexsplines in most harmonic gear drive devices. Because the teeth on the wheel rim of the flexspline are distributed radially, there is a bigger stress concentration on the tooth root of the flexspline meshing with a circular spline, where a fatigue fracture is more likely to occur under the alternating force exerted by the wave generator. The authors' solution to this problem is to place the wave generator outside of the flexspline, which is a scheme named harmonic gear drive (HGD) with external wave generator (EWG).

13 Investigation of Gear Rattle Phenomena (September/October 1992)

The acceptance by discerning customers of passenger cars is dependent upon both the actual noise lever and the subjective noise character. The subjective noise character itself can contain, among other features, undesirable noise phenomena which become apparent at certain points in the vehicle operating range. One such critical phenomenon is gear rattle, which is mainly present under low speed, high load conditions. Due to changes in the angular velocity of the crankshaft, gear rattle under driving conditions occurs at the unloaded gears and splines.

14 Deburring & Finishing Gears with Power Brushes (March/April 1989)

Why Brushes? In this age of hi-tech, robots, automatic machines, machining cells, etc., is there a niche somewhere for power brushes? Let me answer by asking another question. What tool does the gear manufacturer have in his arsenal that allows him to deburr green gears, hardened gears, hobbed gears, ground gears and shaved gears? What tool allows him to deburr powder metal gears - green and sintered - brass gears, bronze gears, stainless gears made of exotic materials such as inconel, waspaloy, or hastaloy, and fiber and plastic gears? How about spur gears, helical gears, sprockets, both internal and external splines, clutch teeth and pump gears?

15 Finishing of Gears by Ausforming (November/December 1987)

Almost all machines or mechanical systems contain precision contact elements such as bearings, cams, rears, shafts, splines and rollers. These components have two important common requirements: first, they must possess sufficient mechanical properties, such as, high hardness, fatigue strength and wear resistance to maximize their performance and life; second, they must be finished to close dimensional tolerances to minimize noise, vibration and fatigue loading.

16 Estimating Hobbing Times (July/August 1989)

Hobbing is a continuous gear generation process widely used in the industry for high or low volume production of external cylindrical gears. Depending on the tooth size, gears and splines are hobbed in a single pass or in a two-pass cycle consisting of a roughing cut followed by a finishing cut. State-of-the-art hobbing machines have the capability to vary cutting parameters between first and second cut so that a different formula is used to calculate cycle times for single-cut and double-cut hobbing.

News Items About splines

1 Frenco Adds Gage for Measuring Splines to Produce A Circumferential Backlash Measuring Instrument (April 16, 2005)
Frenco has expanded its product line by starting to produce a circumferential backlash measuring instrument. According to its press r... Read News