super skiving - Search Results

Articles About super skiving


Articles are sorted by RELEVANCE. Sort by Date.

1 Super Skiving Cutter (August 2019)

Mitsubishi Heavy Industries, Ltd. (MHI) conducted a comparison test between the super skiving cutter and the pinion skiving cutter used in the conventional skiving process and the test results are reported here.

2 Hard Gear Processing with Skiving Hobs (March/April 1985)

As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.

3 Getting in Sync (January/February 2019)

Gear skiving is here to stay, and as a result of this industry shift, it’s become paramount to improve how well machining spindles synchronize with each other.

4 Skiving is Thriving on a Global Scale (January/February 2018)

Call it new wine in old bottles, or old wine in new bottles, but gear skiving has certainly aged well over time. Gear skiving's evolution, perhaps gaining momentum most dramatically since around 2004, has ultimately led to rather dramatic technological advancement and cost saving in the manufacture of certain gears.

5 Praewema Antriebstechnik Develops Precise Machining Solutions for Planetary Gearing (January/February 2018)

The DVS gearing specialist Praewema Antriebstechnik continues to expand its technological expertise in order to keep pace with the growing significance of planetary geartrains for automatic and particularly electric vehicles, with the associated need for even higher-precision production of toothed gear components.

6 The Multifunctional Option (August 2017)

Toyoda's new GS300H5 Gear Skiving Center is the first in the world to equip a skiving function to a general purpose horizontal machining center (HMC), through which mass production of gear parts is achieved. CNC controls and a high speed rotary table were developed specifically to achieve high-speed, multifunctional machining, as a compact and lightweight product, simple in programming functions.

7 Hard Scudding - The Future Has Arrived (August 2017)

As the science of Scudding has rapidly evolved, the interest in the more advanced process Hard Scudding is increasing.

8 Skiving - A Manufacturing Renaissance (August 2017)

Skiving will be front and center when the gear industry comes together in Columbus this October. Attendees will find dedicated skiving equipment, multifunctional machines with skiving options and a slew of new cutting tools, machine designs and modifications to make the process more efficient and robust.

9 Upgrading Your Toolbox (May 2017)

Manufacturers focus on tool design, materials, coating, machine tool options and cutting parameters.

10 Hard-Finishing Spiral Bevel Gears (March/April 2016)

Could you explain to me the difference between spiral bevel gear process face hobbing-lapping, face milling-grinding and Klingelnberg HPG? Which one is better for noise, load capacity and quality?

11 Power Skiving of Cylindrical Gears on Different Machine Platforms (January/February 2014)

It has long been known that the skiving process for machining internal gears is multiple times faster than shaping, and more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.

12 Carbide Rehobbing A New Technology That Works! (May/June 1994)

Many people in the gear industry have heard of skiving, a process wherein solid carbide or inserted carbide blade hobs with 15 - 60 degrees of negative rake are used to recut gears to 62 Rc. The topic of this article is the use of neutral (zero) rake solid carbide hobs to remove heat treat distortion, achieving accuracies of AGMA 8 to AGMA 14, DIN 10-5 and improving surface finish on gears from 8 DP - 96 DP (.3 module - .26 m.).

13 Using Hobs for Skiving; A Pre-Finish and Finishing Solution (May/June 1993)

Our company manufactures a range of hardened and ground gears. We are looking into using skiving as part of our finishing process on gears in the 4-12 module range made form 17 CrNiMO6 material and hardened to between 58 and 62 Rc. Can you tell us more about this process?

14 Reliable and Efficient Skiving (September 2011)

Klingelnberg's new tool and machine concept allow for precise production.

15 Software-Based Process Design in Gear Finish Hobbing (May 2010)

In this paper, the potential for geometrical cutting simulations - via penetration calculation to analyze and predict tool wear as well as to prolong tool life - is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.

16 Oil-Out Endurance Under the Lens (January/February 2017)

Oil-out conditions, or conditions in which an aircraft is operating without any oil in its gearbox or transmission, are devastating for an aircraft's hardware. Even the sturdiest gears usually can't last 30 minutes under such conditions before they catastrophically fail, and the whole system usually follows shortly after. That doesn't leave pilots with a whole lot of time to find a suitable location to land in the case of an oil-out emergency.

17 The Capacity of Superfinished Vehicle Components to Increase Fuel Economy, Part I (January/February 2009)

This paper will present data from both laboratory and field testing demonstrating that superfinished components exhibit lower friction, operating temperature, wear and/ or higher horsepower, all of which translate directly into increased fuel economy.

18 Practical Gear Characteristics: Process Characteristics of the Most Popular Cutting Methods (March/April 2016)

The cutting process consists of either a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).

19 Repair of High-Value, High-Demand Spiral Bevel Gears by Superfinishing (October 2012)

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

20 Case Study Involving Surface Durability and Improved Surface Finish (August 2012)

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

21 Mirror Finishing of Tooth Surfaces Using A Trial Gear Grinder With Cubic-Boron-Nitride Wheel (November/December 1986)

In conventional gear grinders, grinding wheels with Alundum grains and a hardness of about 2000 HV have been used for finishing steel gears with hardnesses up to about 1000HV. In this case, the accuracy of the gears ground is greatly affected by wear of the grinding wheel because the difference in hardness is comparatively small when the gears are fully hardened.

22 Notes From the Editors Desk (March/April 1986)

Sitting down to write my comments for this issue, one event filled my thoughts-the transformation and uninhibited euphoria that overcame Chicago, and the whole Midwest, by the Bears reaching and winning the Superbowl.

23 Super-Reduction Hypoid Gears (August 2011)

Super-reduction hypoid gears (SRH) are bevel worm gears with certain differences regarding hypoid gears. If two axes are positioned in space and the task is to transmit motion and torque between them using some kind of gears with a ratio above 5 and even higher than 50, the following cases are commonly known. Tribology Aspects in Angular Transmission Systems, Part VIII.

24 Lapping and Superfinishing Effects on Surface Finish of Hypoid Gears and Transmission Errors (September/October 2008)

This presentation is an expansion of a previous study (Ref.1) by the authors on lapping effects on surface finish and transmission errors. It documents the effects of the superfinishing process on hypoid gears, surface finish and transmission errors.

25 Operational Condition and Superfinishing Effect on High-Speed Helical Gearing System Performance (March/April 2008)

An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system. Test results from the parametric studies and the superfinishing process are presented.

26 Gear Finishing with a Nylon Lap (September/October 2005)

The objective of this research is to develop a new lapping process that can efficiently make tooth flanks of hardened steel gears smooth as a mirror.

27 Superfinishing Gears - The State of the Art, Part II (July/August 2005)

In a previous article, the authors identified two misconceptions surrounding gear superfinishing. Here, they tackle three more.

28 Gear Corrosion During the Manufacturing Process (September/October 2009)

No matter how well gears are designed and manufactured, gear corrosion can occur that may easily result in catastrophic failure. Since corrosion is a sporadic and rare event and often difficult to observe in the root fillet region or in finely pitched gears with normal visual inspection, it may easily go undetected. This paper presents the results of an incident that occurred in a gear manufacturing facility several years ago that resulted in pitting corrosion and intergranular attack (IGA).

29 The Effect of Superfinishing on Gear Micropitting (March/April 2009)

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

30 Repair via Isotropic Superfinishing of Aircraft Transmission Gears (May 2009)

The objective of this paper is to demonstrate that transmission gears of rotary-wing aircraft, which are typically scrapped due to minor foreign object damage (FOD) and grey staining, can be repaired and re-used with signifi cant cost avoidance. The isotropic superfinishing (ISF) process is used to repair the gear by removing surface damage. It has been demonstrated in this project that this surface damage can be removed while maintaining OEM specifications on gear size, geometry and metallurgy. Further, scrap CH-46 mix box spur pinions, repaired by the ISF process, were subjected to gear tooth strength and durability testing, and their performance compared with or exceeded that of new spur pinions procured from an approved Navy vendor. This clearly demonstrates the feasibility of the repair and re-use of precision transmission gears.

31 Superfinishing Gears -- The State of the Art (November/December 2003)

Superfinishing the working surfaces of gears and their root fillet regions results in performance benefits.

32 Beautiful on the Inside (January/February 2019)

Automotive gear manufacturers have implemented significant improvements in external planetary gear manufacturing yielding quieter gears. In addition, process stability has increased due to the post-heat treatment finishing processes employed. This article explains various complete solutions for cutting and finishing internal ring gears.

News Items About super skiving

1 MHI Develops 'Super Skiving System' for High-speed Gear Cutting (November 24, 2014)
Mitsubishi Heavy Industries, Ltd. (MHI) has completed development of the “Mitsubishi Super Skiving System” for machining inte... Read News