surface roughness - Search Results

Articles are sorted by RELEVANCE. Sort by Date.

In earlier studies, surface roughness has been shown to have a significant influence on gear pitting life. This paper discusses how high surface roughness introduces a wear mechanism that delays the formation of pits. Accompanied by a full-page technical review.

Surface roughness measuring of gear teeth can be a very frustrating experience. Measuring results often do not correlate with any functional characteristic, and many users think that they need not bother measuring surface roughness, since the teeth are burnished in operation. They mistakenly believe that the roughness disappears in a short amount of time. This is a myth! The surface indeed is shiny, but it still has considerable roughness. In fact, tests indicate that burnishing only reduces the initial roughness by approximately 25%.

Most research on micropitting is done on small-sized gears. This article examines whether those results are also applicable to larger gears.

Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some special cases, such as small scale production and, the obvious, manufacture of internal gears. To manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the geometry of the form wheel is determined through inverse calculation. A mathematical model is presented where it is possible to determine the machined gear tooth surface in three dimensions, manufactured by this tool, taking the finite number of cutting edges into account. The model is validated by comparing calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.

The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.

Could the tip chamfer that manufacturing people usually use on the tips of gear teeth be the cause of vibration in the gear set? The set in question is spur, of 2.25 DP, with 20 degrees pressure angle. The pinion has 14 teeth and the mating gear, 63 teeth. The pinion turns at 535 rpm maximum. Could a chamfer a little over 1/64" cause a vibration problem?

Rotary gear honing is a crossed-axis, fine, hard finishing process that uses pressure and abrasive honing tools to remove material along the tooth flanks in order to improve the surface finish (.1-.3 um or 4-12u"Ra), to remove nicks and burrs and to change or correct the tooth geometry. Ultimately, the end results are quieter, stronger and longer lasting gears.

A reader asks about ion-nitride finished shafts and the proper friction coefficient to be used for calculations.

In today's production environment, a variety of different measurement devices is used to assess the quality and accuracy of workpieces. These devices include CMMs, gear checkers, form testers, roughness testers, and more. It requires a high machine investment and a high handling effort - especially if a full end-of-line measurement is needed. One approach to reduce quality costs is to include all measurements in one single machine that is suitable and robust enough for use in production.

Alongside the macro test parameters on tooth flanks for profile and tooth traces, surface properties (roughness) play a decisive role in ensuring proper toothed gear function. This article addresses roughness measurement systems on tooth flanks. In addition to universal test equipment, modified test equipment based on the profile method for use on gears is addressed in particular. The equipment application here refers to cylindrical gear flanks and bevel gear flanks. The most important roughness parameters, as well as the implementation of the precise measurement procedure will also be described under consideration of the applicable DIN EN ISO standards as well as the current VDI/VDE Directive 2612 Sheet 5.

The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness defined as the ratio of lubricant film thickness to the composite surface roughness. It can be difficult to combine results of studies to create a cohesive and comprehensive data set. In this work gear surface fatigue lives for a wide range of specific film values were studied using tests done with common rigs, speeds, lubricant temperatures, and test procedures.

Inspection of the cutting blades is an important step in the bevel gear manufacture. The proper blade geometry ensures that the desired gear tooth form can be achieved. The accuracy of the process can be compromised when the blade profile consists of several small sections such as protuberance, main profile, top relief and edge radius. Another common obstacle - are outliers which can be caused by dust particles, surface roughness and also floor vibrations during the data acquisition. This paper proposes the methods to improve the robustness of the inspection process in such cases.

Surface coatings or finishing processes are the future technologies for improving the load carrying capacity of case hardened gears. With the help of basic tests, the influence of different coatings and finishing processes on efficiency and resistance to wear, scuffing, micropitting, and macropitting is examined.

News about the latest products in the industry.

Non-uniform gear wear changes gear topology and affects the noise performance of a hypoid gear set. The aggregate results under certain vehicle driving conditions could potentially result in unacceptable vehicle noise performance in a short period of time. This paper presents the effects of gear surface parameters on gear wear and the measurement/testing methods used to quantify the flank wear in laboratory tests.

Klingelnberg presents the technical aspects of its roughness measurement system.

Superfinishing the working surfaces of gears and their root fillet regions results in performance benefits.

The latest news from Krebs & Riedel, Martin Kapp, QuesTek and more.

My wife, Wendy, and I have been taking on a lot of DIY home improvement projects lately around the house.

Gear noise is among the issues of greatest concern in today's modern gearboxes. Significant research has resulted in the application of enhancements in all phases of gear manufacturing, and the work is ongoing. With the introduction of Electric Vehicles (EV), research and development in this area has surged in recent years. Most importantly, powerful new noise analysis solutions are fast becoming available.

The properties of both shot-peened and cold rolled PM gears are analyzed and compared. To quantify the effect of both manufacturing processes, the tooth root bending fatigue strength will be evaluated and compared to wrought gears.

Chamfering and deburring have been described as "unloved," a "necessary evil" and, in fact - "dead." After all, manual deburring is still common in many shops.

The complete Industry News section from the August 2018 issue of Gear Technology.

The complete Product News section from the August 2018 issue of Gear Technology.

The latest technology on display in Columbus, OH. October 24-26.

This presentation introduces a new procedure that - derived from exact calculations - aids in determining the parameters of the validation testing of spiral bevel and hypoid gears in single-reduction axles.

In a previous article, the authors identified two misconceptions surrounding gear superfinishing. Here, they tackle three more.

Heat treat suppliers look to the gear industry and the upcoming combined Gear Expo/Heat Treat 2013 for new business.

Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UHâ€“60 helicopter tail rotor drivetrain. As spiral bevel gears for the UHâ€“60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.

Gear tooth wear and micropitting are very difficult phenomena to predict analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.

A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).

In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.

Results from the Technical University of Munich were presented in a previous technical article (see Ref. 4). This paper presents the results of Ruhr University Bochum. Both research groups concluded that superfinishing is one of the most powerful technologies for significantly increasing the load-carrying capacity of gear flanks.

Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

Rotary gear honing is a hard gear finishing process that was developed to improve the sound characteristics of hardened gears by: Removing nicks and burrs; improving surface finish; and making minor corrections in tooth irregularities caused by heat-treat distortion.

Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.

Gear surface fatigue endurance tests were conducted on two groups of 10 gears each of carburized and hardened AlSI 9310 spur gears manufactured from the same heat of material

With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.

Several trends in mechanical engineering are leading to greater surface stress on components and thus to unacceptable wear. These trends include greater stresses due to increased power densities; the need to maintain high precision of components throughout their service life; and the environmental imperative to reduce use of lubricants and additives.