tempered - Search Results

Articles About tempered


Articles are sorted by RELEVANCE. Sort by Date.

1 Austempered Gears and Shafts: Tough Solutions (March/April 2001)

Austempered irons and steels offer the design engineer alternatives to conventional material/process combinations. Depending on the material and the application, austempering may provide the producers of gear and shafts with the following benefits: ease of manufacturing, increased bending and/or contact fatigue strength, better wear resistance or enhanced dampening characteristics resulting in lower noise. Austempered materials have been used to improve the performance of gears and shafts in many applications in a wide range of industries.

2 Austempered Ductile Iron: Technology Base Required for an Emerging Technology (October/November 1984)

This paper addresses Austempered Ductile Iron (ADI) as an emerging Itechnology and defines its challenge by describing the state-of-the-art of incumbent materials. The writing is more philosophical in nature than technical and is presented to establish a perspective.

3 ADI - A Designer Gear Material (March/April 1995)

If someone were to tell you that he had a gear material that was stronger per pound than aluminum, as wear-resistant as steel, easier to machine than free-machining steel and capable of producing gears domestically for 20% less than those now cut from foreign made forgings, would you consider that material to be "high tech"? Probably. Well, throw out all the pre-conceived notions that you may have had about "high tech" materials. The high-performance material they didn't teach you about in school is austempered ductile iron (ADI).

4 Carburizing of Big Module and Large Diameter Gears (September/October 2002)

Carburized gears have higher strengths and longer lives compared with induction-hardened or quench-tempered gears. But in big module gears, carburizing heat-treatment becomes time-consuming and expensive and sometimes cannot achieve good hardness due to the big mass-effect. Also, it is not easy to reduce distortion of gears during heat treatment.

5 Austempered Nodular Cast Irons (March/April 1985)

Austempering heat treatments (austenitizing followed by rapid cooling to the tempering temperature) have been applied to nodular irons on an experimental basis for a number of years, but commercial interest in the process has only recently come to the surface.

6 Gear Expo 2011 - Tempered Enthusiasm (November/December 2011)

I came back from Gear Expo in a pretty good mood, and judging by the smiles on the faces of exhibitors I saw, I'm not alone. In fact, the mood at Gear Expo 2011 was the best I've seen in recent memory.

7 Challenges Tempered by Optimism (January/February 2017)

For many of us, 2016 was a rough year - and the results of our annual State of the Gear Industry Survey show it. 40% of respondents indicated their companies had cut staff, while only 27% indicated an increase in employment. Clearly, there have been widespread cutbacks.

8 Comparison of PM-HSS and Cemented Carbide Tools in High-Speed Gear Hobbing (September/October 2009)

This article examines the dry hobbing capabilities of two cutting tool materials—powder metallurgical high-speed steel (PM-HSS) and cemented carbide. Cutting trials were carried out to analyze applicable cutting parameters and possible tool lives as well as the process reliability. To consider the influences of the machinability of different workpiece materials, a case hardening steel and a tempered steel were examined.

9 Influence of Grinding Burn on Pitting Capacity (August 2008)

This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.

10 Mechanical Behavior and Microstructure of Ausrolled Surfaces in Gear Steels (March/April 1995)

Ausforming, the plastic deformation of heat treatment steels in their metastable, austentic condition, was shown several decades ago to lead to quenched and tempered steels that were harder, tougher and more durable under fatigue-type loading than conventionally heat-treated steels. To circumvent the large forces required to ausform entire components such as gears, cams and bearings, the ausforming process imparts added mechanical strength and durability only to those contact surfaces that are critically loaded. The ausrolling process, as utilized for finishing the loaded surfaces of machine elements, imparts high quality surface texture and geometry control. The near-net-shape geometry and surface topography of the machine elements must be controlled to be compatible with the network dimensional finish and the rolling die design requirements (Ref. 1).

11 Effect of Non-Metallic Inclusions on Bending Fatigue Performance in High Strength 4140 Steel (March/April 2018)

Three samples of quenched and tempered 4140 steel, with varying levels of oxygen and sulfur, were submitted to a series of bending fatigue tests.