vehicles - Search Results

Articles About vehicles


(SPONSORED CONTENT)

Articles are sorted by RELEVANCE. Sort by Date.

1 Noise Reduction in an EV Hub Drive Using a Full Test and Simulation Methodology (May 2016)

With the ongoing push towards electric vehicles (EVs), there is likely to be increasing focus on the noise impact of the gearing required for the transmission of power from the (high-speed) electric motor to the road. Understanding automotive noise, vibration and harshness (NVH) and methodologies for total in-vehicle noise presupposes relatively large, internal combustion (IC) contributions, compared to gear noise. Further, it may be advantageous to run the electric motors at significantly higher rotational speed than conventional automotive IC engines, sending geartrains into yet higher speed ranges. Thus the move to EV or hybrid electric vehicles (HEVs) places greater or different demands on geartrain noise. This work combines both a traditional NVH approach (in-vehicle and rig noise, waterfall plots, Campbell diagrams and Fourier analysis) - with highly detailed transmission error measurement and simulation of the complete drivetrain - to fully understand noise sources within an EV hub drive. A detailed methodology is presented, combining both a full series of tests and advanced simulation to troubleshoot and optimize an EV hub drive for noise reduction.

2 The Relationship of Measured Gear Noise to Measured Gear Transmission Errors (January/February 1988)

Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.

3 Transmission Throwdown (May 2017)

Which transmission system will come out on top is a hot topic in the automotive community. With multiple transmission-centric conferences on the horizon, there will be plenty of debate, but how much will the answer actually affect gear manufacturers, and when?

4 Electric Vehicle Whine Noise - Gear Blank Tuning as an Optimization Option (March/April 2019)

Noise issues from gear and motor excitation whine are commonly faced by many within the EV and HEV industry. In this paper the authors present an advanced CAE methodology for troubleshooting and optimizing such NVH phenomenon.

5 Blue Skies for Aerospace Parts Manufacturing (March/April 2006)

Aerospace manufacturing has seen quite a turnaround in the past few years. The world's manufacturers of airplanes, helicopters, missiles, space vehicles and satellites are all extremely busy right now--and that's keeping quite a few gear manufacturers busy as well.

6 Future Demands Next Generation of Standards and Practices in Gear Industry (May 2010)

Gear manufacturers are moving into an era that will see changes in both engineering practices and industry standards as new end-products evolve. Within the traditional automotive industry, carbon emission reduction legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles. Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.

7 Powder Metal Magic (August 2012)

Capstan Atlantic, located in Wrentham, Massachusetts, produces powder metal gears, sprockets and complex structural components. The company has provided unique powder metal products in a variety of industries including automotive, business machines, appliances, lawn and garden equipment and recreational vehicles.

8 Predicted Scuffing Risk to Spur and Helical Gears in Commercial Vehicle Transmissions (November/December 2012)

AGMA925–A03 scuffing risk predictions for a series of spur and helical gear sets of transmissions used in commercial vehicles ranging from SAE Class 3 through Class 8.

9 Gear Research Institute (May 2013)

The essence of designing gears is often by necessity risk-averse, given that many of them are used in applications where loss of life is a distinct possibility. The Gear Research Institute (GRI) at The Pennsylvania State University conducts risk reduction testing with the same goal in mind - whether it be gears in fighter jets, Ferris wheels, tanks, or countless other gear-reliant vehicles and machinery.

10 New Transmissions Make the Gas GREENER (July 2015)

“Highway vehicles release about 1.7 billion tons of greenhouse gases (GHGs) into the atmosphere each year — mostly in the form of carbon dioxide (CO2) — contributing to global climate change. The CO2 emissions of a car are directly proportional to the quantity of fuel consumed by an engine. In 2013, U.S. greenhouse gas emissions from transportation were second only to the electricity sector — an increase of about 16% since 1990.” (EPA.GOV).

11 Improved Broaching Steel Technology (July 2016)

Broaching is a machining technique commonly used to cut gear teeth or cam profiles for the high volume manufacture of power transmission parts used in vehicles (Refs. 1–2). This article shows how the right gear blank material can make all the difference if you want to get more parts out of each tool.

12 Cleaner Steels Provide Gear Design Opportunities (November/December 2017)

Gear designers face constant pressure to increase power density in their drivetrains. In the automotive industry, for example, typical engine torque has increased significantly over the last several decades. Meanwhile, the demands for greater fuel efficiency mean designers must accommodate these increased loads in a smaller, more lightweight package than ever before. In addition, electric and hybrid vehicles will feature fewer gears, with fewer transmission speeds, running at higher rpms, meaning the gears in those systems will have to endure life cycles far beyond what is typical with internal combustion engines.

13 Praewema Antriebstechnik Develops Precise Machining Solutions for Planetary Gearing (January/February 2018)

The DVS gearing specialist Praewema Antriebstechnik continues to expand its technological expertise in order to keep pace with the growing significance of planetary geartrains for automatic and particularly electric vehicles, with the associated need for even higher-precision production of toothed gear components.

14 Inspection System Upgrades Meet EV Gear Challenges (July 2018)

Delta Research upgrades its Gleason Metrology Workhorses to meet the development requirements of the latest electrical drive vehicles.

15 NVH Potential of PM Gears for Electrified Drivetrains (September/October 2018)

Electrification has already started to have a noticeable impact on the global automotive industry. As a result, the drivetrains of hybrid (HEV) and full electric vehicles (EV) are facing many challenges, like increased requirements for NVH in high speed e-Drives and the need for performance improvements to deal with recuperation requirements. Motivated by the positive validation results of surface densified manual transmission gears which are also applicable for dedicated hybrid transmissions (DHTs) like e-DCTs, GKN engineers have been looking for a more challenging application for PM gears within those areas.

16 Design and Optimization of a Hybrid Vehicle Transmission (May 2019)

The paper is not the proof of a discovery, but it is the description of a method: the optimization of the microgeometry for cylindrical gears. The method has been applied and described on some transmissions with helical gears and compound epicyclic, used on different hybrid vehicles. However, the method is also valid for industrial gearboxes.