x-ray - Search Results

Articles About x-ray

Articles are sorted by RELEVANCE. Sort by Date.

1 Grinding Induced Changes in Residual Stresses of Carburized Gears (March/April 2009)

This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.

2 Measuring Residual Stress in Gears (March/April 2015)

I have heard that X-ray diffraction does not tell the whole story and that I should really run a fatigue test. I understand this may be the best way, but is there another method that gives a high degree of confidence in the residual stress measurement?

3 Quantitative Residual Stress Measurements for Improved Quality Control and Process Optimization in Gears and Additively Manufactured Components (June 2020)

In this article, the focus is put on one technology, X-ray diffraction (XRD), and more specifically, residual stress measurement by way of XRD for both process development and quality control.

4 Comparative Load Capacity Evaluation of CBN-Finished Gears (May/June 1990)

Cubic boron nitride (CBN) finishing of carburized gearing has been shown to have certain economic and geometric advantages and, as a result, it has been applied to a wide variety of precision gears in many different applications. In critical applications such as aerospace drive systems, however, any new process must be carefully evaluated before it is used in a production application. Because of the advantages associated with this process, a test program was instituted to evaluate the load capacity of aerospace-quality gears finished by the CBN process as compared to geometrically identical gears finished by conventional grinding processes. This article presents a brief description of the CBN process, its advantages in an aerospace application, and the results of an extensive test program conducted by Boeing Helicopters (BH) aimed at an evaluation of the effects of this process on the scoring, surface durability, and bending fatigue properties of spur gears. In addition, the results of an x-ray diffraction study to determine the surface and subsurface residual stress distributions of both shot-peened and nonshot-peened CBN-ground gears as compared to similar conventionally ground gears are also presented.