• TOPICS
    • Design
    • Manufacturing
    • Inspection
    • Heat Treating
    • Lubrication
    • Materials
    • The Gear Industry
    • Gears by Type
  • MAGAZINE
    • Current Issue
    • Departments
    • Archives
    • Subscribe
    • Advertise
  • NEWSLETTER
    • Subscribe
  • VIDEO
    • Gear Technology TV
      • Ask the Expert Live
      • Revolutions
    • Industry Videos
  • BLOGS
  • BUYER'S GUIDE
  • NEWS and EVENTS
    • Product News
    • Industry News
    • Events
  • ADVERTISING
    • Brand Awareness
      • Print: Display Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Newsletter Sponsored Content (Native Advertising)
    • Response & Lead Generation
      • Online: Sponsored Content (Native Advertising)
      • E-mail: Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • Online: Buyers Guide
    • Print Advertising
      • Print: Display Advertising
      • Print: IMTS Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
      • Print: Specifications
    • Online Advertising
      • Online: Web Banners & Keyword Banners
      • Online: Native Advertising (Sponsored Content)
      • Online: Buyers Guide
      • Online: Specifications
    • E-mail Advertising
      • E-mail: E-Newsletters
      • E-mail: Newsletter Sponsored Content (Native Advertising)
      • E-mail: Custom, White Papers & Webinars
      • E-mail: Specifications
    • Special Promotions
      • Print: IMTS Showstoppers
      • Print: Buyers Guide
      • Print: Manufacturing sMart
  • CONTACT US
  • AGMA
    • Membership
    • Events
    • Education
    • Emerging Technology
    • AGMA Media
    • Standards
Subscribe
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Home » Keywords » TCA

Items Tagged with 'TCA'

ARTICLES

Full Contact Analysis vs. Standard Load Capacity Calculation for Cylindrical Gears

November 1, 2018
In this paper local tooth contact analysis and standard calculation are used to determine the load capacity for the failure modes pitting, tooth root breakage, micropitting, and tooth flank fracture; analogies and differences between both approaches are shown. An example gearset is introduced to show the optimization potential that arises from using a combination of both methods. Difficulties in combining local approaches with standard methods are indicated. The example calculation demonstrates a valid possibility to optimize the gear design by using local tooth contact analysis while satisfying the requirement of documenting the load carrying capacity by standard calculations.
Read More

Tooth Contact Analysis - Off Line of Action Contact and Polymer Gears

September 1, 2017
Dr. Paul Langlois
The aim of the study was to apply such a specialized tooth contact analysis method, well-used within the steel gear community, to a polymer gear application to assess what modifications need be made to these models for them to be applicable to polymer gears.
Read More

Drive Line Analysis for Tooth Contact Optimization of High-Power Spiral Bevel Gears

June 1, 2011
In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.
Read More

Spiral Bevel Gears: Tribology Aspects in Angular Transmission Systems, Part IV

January 1, 2011
This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.
Read More

KISSsoft Introduces New Features with Latest Release

September 1, 2010
Tooth contact under load is an important verification of the real contact conditions of a gear pair and an important add-on to the strength calculation according to standards such as ISO, AGMA or DIN. The contact analysis simulates the meshing of the two flanks over the complete meshing cycle and is therefore able to consider individual modifications on the flank at each meshing position.
Read More

New Developments in TCA and Loaded TCA

May 1, 2007
How the latest techniques and software enable faster spiral bevel and hypoid design and development.
Read More

The Next Step in Bevel Gear Metrology

January 1, 1996
Dr. Hermann J. Stadtfeld
In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.
Read More

Generation of Helical Gears with New Surface Topology by Application of CNC Machines

January 1, 1994
Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.
Read More

Contact Analysis of Gears Using a Combined Finite Element and Surface Integral Method

July 1, 1993
The complete and accurate solution t the contact problem of three-dimensional gears has been, for the past several decades, one of the more sought after, albeit elusive goals in the engineering community. Even the arrival on the scene in the mid-seventies of finite element techniques failed to produce the solution to any but the most simple gear contact problems.
Read More

Tooth Contact Shift in Loaded Spiral Bevel Gears

November 1, 1992
An analytical method is presented to predict the shifts of the contact ellipses on spiral bevel gear teeth under load. The contact ellipse shift is the motion of the point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance.
Read More
More Articles Tagged with 'TCA'
Free Gear Technology Subscriptions
Subscribe
Free Gear Technology Subscriptions
Subscribe
FEATURED VIDEO
  • Liebherr pallet
    Liebherr Palletizing Cell
June 23, 2022
RECOMMENDED
  • Grinding Slow, Grinding Fine

    June 27, 2022
    grinding-large-gear.jpg
  • Nondestructive evaluation of stresses and stress-related defects in gears

    June 27, 2022
    nondestructive-testing.jpg
  • Technology Advancements in EV Inspection

    June 27, 2022
    edrive-inspection.jpg
  • IMTS 2022 Booth Previews

    July 14, 2022
    imtsmap.jpg
  • Preview of 3D Printing at IMTS 2022

    July 14, 2022
    3d-printed-gear.jpg
  • IMTS 2022 Booth Previews

    July 14, 2022
    imtsmap.jpg
  • Preview of 3D Printing at IMTS 2022

    July 14, 2022
    3d-printed-gear.jpg
  • Grinding Slow, Grinding Fine

    June 27, 2022
    grinding-large-gear.jpg
  • Subscribe
  • Advertise
  • Contribute
  • AGMA
Powered byAGMA
Copyright © 2022 Gear Technology
  • Privacy Policy
  • Contact