In this paper local tooth contact analysis and standard calculation are
used to determine the load capacity for the failure modes pitting,
tooth root breakage, micropitting, and tooth flank fracture; analogies
and differences between both approaches are shown. An example gearset is introduced to show the optimization potential that arises from using a combination of both methods. Difficulties in combining local approaches with standard methods are indicated. The example calculation demonstrates
a valid possibility to optimize the gear design by using local tooth contact analysis while satisfying the requirement of documenting the load carrying capacity by standard calculations.
The aim of the study was to apply such a specialized tooth contact analysis method, well-used within the steel gear community, to a polymer gear application to assess what modifications need be made to these models for them to be applicable to polymer gears.
In the majority of spiral bevel gears, spherical crowning is used. The contact pattern is set to the center of the active tooth flank and the extent of the crowning is determined by experience. Feedback from service, as well as from full-torque bench tests of complete gear drives, has shown that this conventional design practice leads to loaded contact patterns, which are rarely optimal in location and extent. Oversized reliefs lead to small contact area, increased stresses and noise, whereas undersized reliefs result in an overly sensitive tooth contact.
This article is part four of an eight-part series on the tribology aspects of angular gear drives. Each article will be presented first and exclusively by Gear Technology, but the entire series will be included in Dr. Stadtfeld’s upcoming book on the subject, which is scheduled for release in 2011.
Tooth contact under load is an important verification of the real contact conditions of a gear pair and an
important add-on to the strength calculation according to standards such
as ISO, AGMA or DIN. The contact analysis simulates the meshing of the
two flanks over the complete meshing
cycle and is therefore able to consider
individual modifications on the flank
at each meshing position.
In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.
Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.
The complete and accurate solution t the contact problem of three-dimensional gears has been, for the past several decades, one of the more sought after, albeit elusive goals in the engineering community. Even the arrival on the scene in the mid-seventies of finite element techniques failed to produce the solution to any but the most simple gear contact problems.
An analytical method is presented to predict the shifts of the contact ellipses on spiral bevel gear teeth under load. The contact ellipse shift is the motion of the point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance.