Two items of interest have crossed my desk in the last couple of weeks. One of them is a copy of a speech by Harry E. Figge, Jr., Chairman and CEO of Figge, International Inc., and the other is an article by Peter Brimelow in the July 19, 1993, issue of Forbes. The two items are directly related to one another, the Brimelow article being a response to the points raised in Figge's speech and in much grater detail in his book, Bankruptcy 1995: The Coming Collapse of America and How to Stop It. Both the speech and the response are well worth our attention.
Forty of Gear Technology's pre-show and show issue advertisers will be exhibiting a wide range of goods and services at AGMA's Gear Expo '93. The exhibition will be held October 10-13 at Cobo Conference & Exhibition Center in Detroit, MI. Below is an alphabetical listing of these advertisers and a preview of what can be seen at their booths.
Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.
The Hobbing Process
The hobbing process involves a hob which is threaded with a lead and is rotated in conjunction with the gear blank at a ratio dependent upon the number of teeth to be cut. A single thread hob cutting a 40-tooth gear will make 40 revolutions for each revolution of the gear. The cutting action in hobbing is continuous, and the teeth are formed in one passage of the hob through the blank. See Fig. 1 for a drawing of a typical hob with some common nomenclature.
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ration under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque and power. Significant parameters in the design are the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near-optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
Putting one's best foot forward is important for successful business communication. And successful business people know the "rule" of the game, what it say and do in business situations, to make the best impression. However, these rules change from country to country, and what is appropriate behavior here may appear rude to someone from Latin America, Europe or Asia To help you become more familiar with some of the different rules of engagement in other countries, Gear Technology spoke with three businessmen who have had extensive contact in various part of the world.