In modern automotive vehicles, gear noise becomes more and more of an issue. The main reason is the reduced masking noise of the engine, which vanishes completely in the case of an electric driveline. Improved gear quality unfortunately does not correlate with a better noise performance in any case. High gear quality makes sure that the gear flanks are inside tight tolerances and that all teeth are nearly identical. Even if the running behavior of such gear sets shows a very low sound pressure level, the noise perception for human ears may be annoying.
Part I of this paper, which appeared in the January/February issue of Gear Technology, described the theory behind double-flank composite inspection. It detailed the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. The concluding Part II presents a discussion of the practical application of double-flank composite inspection -- especially for large-volume operations. It also addresses statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
The concept of "transmission error" is relatively new and stems from research work in the late 1950s by Gregory, Harris and Munro,(1) together with the need to check the accuracy of gear cutting machines. The corresponding commercial "single flank" testing equipment became available in the 1960s, but it was not until about ten years ago that it became generally used, and only recently has it been possible to test reliably at full load and full speed.