Gearbox performance, reliability, total cost of ownership (energy cost), overall impact on the environment, and anticipation of additional future regulations are top-of-mind issues in the industry. Optimization of the bearing set can significantly improve gearbox performance.
The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
In epicyclic gear sets designed for aeronautical applications, planet gears are generally supported by spherical roller bearings with the bearing outer race integral to the gear hub. This article presents a new method to compute roller load distribution in such bearings where the outer ring can’t be considered rigid.
Make no mistake -- lean manufacturing is here to stay. And no wonder. As a fiercely competitive global economy continues to alter companies’ “Main Street” thinking, that relatively new dynamic is spurring the need for “I-need-it-yesterday” production output. And for increasingly more industries -- big or small -- that means getting as lean as you can, as fast as you can.
Zerol bevel gears are the special case of spiral bevel gears with a spiral angle of 0°. They are manufactured in a single-indexing face milling process with large cutter diameters, an extra deep tooth profile and tapered tooth depth.
Two high-volume gear production cells grace the shop floor at Delta Research Corporation in Livonia, Michigan. Thanks to lean manufacturing, these cells have never shipped a defective part to a customer since they were developed over three years ago.
For more than 10 months, NASA ground engineers and International Space Station (ISS) astronauts have been
struggling with a perplexing malfunction of one of the station’s two solar array rotary joints (SARJ).