Polymer gears find increasing applications in the automotive industry, office machines, food machinery, and home appliances. The main reason for this success is their low cost. Their low weight, quietness of operation, and meshing without lubricant are also interesting. However, they have poor
heat resistance and are limited to rotational transmission. In order to improve the gears' behavior, glass fiber is added
This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.
This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting
high torque, adding fibers can significantly increase their performance. The particular case of
polyamide 6 + 30% glass fibers is studied in this paper.
This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.
This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer
gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight.
Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.