The world is full of acronyms. At work, the inbox reveals e-mails from the AWEA, SAE, MPIF and AMT. On the weekends, Saturday mornings are consumed by activities involving the AYSO, PTA, YMCA or DMV. It’s a struggle to determine what organization does what and why we should care in the first
place.
For more than 10 months, NASA ground engineers and International Space Station (ISS) astronauts have been
struggling with a perplexing malfunction of one of the station’s two solar array rotary joints (SARJ).
Induction hardening is a heat treating technique that can be used to selectively harden portions of a gear, such as the flanks, roots and tips of teeth, providing improved hardness, wear resistance, and contact fatigue strength without affecting the metallurgy of the core and other parts of the component that don’t require change. This article provides an overview of the process and special
considerations for heat treating gears. Part I covers gear materials, desired microsctructure, coil design and tooth-by-tooth induction hardening.
In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate,
cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.
This presentation is an expansion of a previous study (Ref.1) by the authors
on lapping effects on surface finish and transmission errors. It documents
the effects of the superfinishing process on hypoid gears, surface finish and transmission errors.
Gear on a mountain, you say? How can that be? Someone must be stricken with a bad case of altitude sickness to create that sort of delusion. What’s next, gears in space? On a glacier?
Open any heat treating journal today and you’re certain to find multiple references (articles, technical papers and/or advertisements) promoting low-pressure carburizing (LPC). The uninformed might breeze by these references thinking it’s the next flash-in-the-pan, but unlike in the past, this time the process has legs.
Most anyone that has been in the
gear industry—or any machining and
tooling oriented business, for that
matter—is probably at least somewhat
familiar with the Roto-Flo workhorse
line of hydraulic-actuated spline and
thread rolling machines. After all,
they’ve been at it for decade